
El bioquímico Osamu Shimomura aisló por primera vez la proteína verde fluorescente (GFP) de la medusa Aequorea victoria en 1961.
© imágenes de Mauricio/Lisa Werner/Alamy

En los años siguientes, Shimomura se dedicó a estudiar la GFP y otras proteínas que desempeñan un papel en el brillo de las medusas.
©ddp

Gracias a las proteínas fluorescentes es posible marcar las estructuras de las células vivas.  Esto es útil en la investigación de enfermedades (imagen: células de un osteosarcoma, un tumor óseo maligno).
© Biblioteca de fotografías científicas/Nancy Kedersha

La estructura cilíndrica de las proteínas fluorescentes de la familia GFP es muy estable, una ventaja en el uso de laboratorio.
© Ilustración: Petarg/adobe.stock.com

Martin Chalfie (en la foto) recibió el Premio Nobel de Química en 2008 junto con Roger Tsien y Osamu Shimomura.  En el Aula Magna de la Universidad de Estocolmo informó sobre el desarrollo de GFP como herramienta útil en el laboratorio de los biólogos celulares.
© Olivier Morin/AFP vía Getty Images

El cerebro del pez cebra es un modelo importante en la investigación del cerebro (microscopía óptica).
© Biblioteca de fotografías científicas/Institutos Nacionales de Salud

Las proteínas de diferentes colores nos permiten observar cómo crecen, se conectan y se ramifican las células nerviosas.  El procedimiento se llama “Brainbow”, compuesto por las palabras inglesas Brain y Rainbow.
© Biblioteca de fotografías científicas/Institutos Nacionales de Salud

La nueva técnica permite una nitidez de detalle significativamente mayor en las fibras de imagen del citoesqueleto (azul) y las mitocondrias (amarillo) en comparación con, por ejemplo, la microscopía confocal.
© Irene Böttcher-Gajewski/Instituto Max Planck de Ciencias Naturales Multidisciplinarias

Stefan Hell, del Instituto Max Planck de Química Biofísica de Gotinga, desarrolló el llamado método STED y aumentó así considerablemente la resolución de la microscopía óptica.
© Abbeior Herramientas







